Internal Funds, Moral Hazard,

and Post-Financing Stock Underperformance

Min Cao
Tepper School of Business
Carnegie Mellon University
minc@andrew.cmu.edu *

January 14, 2010

*I am grateful for continuous encouragement and guidance from John O’Brien, Spencer Martin, and Jack Stecher. I thank Jonathan Glover, Jing Li, Pierre Liang, Carolyn Levine, Russell Lundholm, Michael Weisbach, Tim Baldenius, Stephen Hillegeist, Ting Chen, Chen Li, Hong Qu, Jie Chen, Ari Kang and seminar participants at Carnegie Mellon University for their helpful comments and suggestions.
Internal Funds, Moral Hazard, and Post-Financing Stock Underperformance

Abstract

This study investigates how external financing affects incentives and long-term post-financing stock performance conditioned on the availability of internal funds. Post-financing stock underperformance is concentrated among firms with low internal funds at the time of external financing, and is disproportionately large during earnings announcement periods. Furthermore, these firms experience less decrease in post-financing average selling, general, and administrative expenses due to economies of scale from expansion. Finally, related to their external financing activities, these firms have a weaker information environment represented by more optimistic analyst earnings forecasts, larger forecast dispersion, and lower analyst coverage. This empirical evidence is consistent with existence and underestimation of a moral hazard problem induced by conflicts between current shareholders and new claimholders when firms lack internal funds.

Keywords: External financing, moral hazard, stock underperformance, earnings surprise, analysts.

JEL Classification: G32, G34.
1 Introduction

This study provides an explanation for a phenomenon known as "the new issues puzzle," which is documented by Loughran and Ritter (1995). They find that stocks of common stock issuers subsequently underperform nonissuers matched on size and book-to-market ratio for five years.

In fact, the new issues puzzle goes beyond common stock issues, and long-term stock underperformance is found subsequent to most external financing activities: public offerings of equity (Ritter, 1991; Loughran and Ritter, 1995; Spiess and Affleck-Graves, 1995), private placements of equity (Hertzel, Lemmon, Linck, and Rees, 2002), public debt offerings (Spiess and Affleck-Graves, 1999), and bank loans (Billett, Flannery, and Garfinkel, 2001). Bradshaw, Richardson, and Sloan (2006) unify these results by constructing a comprehensive measure for net external financing activities and illustrating a negative relation between net external financing and future stock returns.

This study dissects the puzzle by exploring the incentive changes caused by raising external funds. Tirole (2006) emphasizes in The Theory of Corporate Finance: “Because the essence of corporate finance is that investors cannot appropriate the full benefit attached to the investments they enable, we must distinguish two slices in the overall cake: that for the insiders and the rest for the outsiders.” The stake change for the incumbent shareholders associated with external financing will tend to cause a moral hazard problem when a firm has a low internal funds ratio, defined as the ratio of internal funds to external funds. Specifically, the less internal funds a firm has relative to the external funds it raises, the more incentives incumbent shareholders have to extract private benefit and the less incentives to behave diligently.

The costs of moral hazard could lead to post-financing underperformance if the market incor-

1 The incumbent shareholders can be viewed as the insiders while the new claimholders can be viewed as the outsiders. A simple model in Appendix A illustrates how a moral hazard problem arises when the internal funds ratio is below a certain level.
porates information about them gradually. If so, then underperformance should appear in, or be worse in, firms that lack internal funds at the time of financing. This prediction is borne out clearly in Figure 4 and Figure 5: there is no stock underperformance in firms with ample internal funds, and thus the new issues puzzle is confined to firms that lack internal funds at time of financing. Regression results are consistent with the pattern and robust after controlling for accrual anomaly and possible earnings management before the new issues.

Since managers are more likely to have control and leeway to hide private benefit extraction in selling, general, and administrative expenses (SGAE), the sample firms’ income statements are checked for evidence (Chen, Lu, and Sougiannis, 2008; Lazere, 1997; White and Dieckman, 2005; Wilson, 2000). In general, due to economies of scale from expansion, SGAE (scaled by total assets) should decrease subsequent to net external financing. Nevertheless, firms with the lowest internal funds experience the weakest decrease in post-financing SGAE. Total expenses, however, tend to decrease more equally. This result lends more support to the conjecture of a moral hazard problem.

Two other sets of tests find evidence consistent with incomplete or gradual information incorporation in firms that appear most subject to moral hazard problems. The first set of tests partitions post-financing periods into earnings announcement periods and non-announcement periods. The underperformance for firms with a low ratio of internal funds to external funds is much stronger in the announcement periods, the times of most intense update of firm-specific information.

The second set of tests shows a weaker information environment for firms at the highest risk of moral hazard problems related to their external financing activities. Firms with a low internal funds ratio have more optimistic analyst earnings forecasts, larger forecast dispersion, and lower analyst coverage than firms with a high internal funds ratio. These results are consistent with ex ante underestimation of the moral hazard problem in firms with a low internal funds ratio and slower information discovery and dissemination for these firms.

Ultimately, the market reaction to earnings announcements helps distinguish between system-

2 SGAE and other expenses are defined as being scaled by total assets in all the following discussions.
3 The empirical results discussed above are summarized into a flowchart in Figure 2.
atic risk and disappointment as potential causes of underperformance. If the source of underperformance is only risk change associated with new issuance, the risk change should apply to the following time periods homogenously. Thus, stock returns related to risk should have the same magnitude in the earnings announcement periods and non-earnings announcement periods. The disappointment of overoptimistic investors would instead predict a more concentrated underperformance during the periods when the investors are given new information like earnings news. The more intense stock underperformance around earnings announcements for firms with low internal funds relative to external funds raised not only is consistent with the disappointment explanation, but also reinforces the moral hazard problem associated with these firms as a plausible source for the disappointment. One thing worth clarifying is that the results do not reject systematic risk change as a partial explanation. Rather, the evidence shows that a misspecification of the model of expected returns is unlikely to be the sole cause of measured underperformance. In addition, analyst earnings forecast error provides direct evidence of overoptimism for firms with low internal funds relative to external funds, which could be caused by the underestimation of the agency cost associated with these firms.

While not exhaustive, the results are more consistent with a moral hazard conjecture rather than a signal conjecture, where the amount of internal funds a firm chooses to retain relative to external funds it raises can be a signal of insiders’ private information Myers and Majluf (1984). A low internal funds ratio can signal insiders’ information about high risk or low cash flows in the future. A high risk signal conjecture is not consistent with the long-term stock underperformance for firms with a low internal funds ratio. If a low internal funds ratio is a signal for low cash flows, long-term stock underperformance will follow when the market underreacts to this signal. In the meantime, if underreaction is symmetrical for both good and bad signals, long-term stock overperformance will follow from external financing when the market underreacts to a high ratio as a good signal. This is not observed in the empirical results. Still, if underreaction mainly

4 Studies favoring rational asset pricing use explanations grounded in risk change associated with new issuance. For example, Eckbo, Masulis, and Norli (2000) emphasize decreased risk induced by leverage decrease after the equity issuance. Carlson, Fisher, and Giammarino (2006) argue that the new issuance helps convert growth options into asset in place and thus decrease the firm’s risk. Lyandres, Sun, and Zhang (2007) argue that the investment funded by new issuance is associated with a lower discount rate of the project and construct an investment factor. Sagi, Spiegel, and Watanabe (2008) put the risk decrease associated with external financing into a general equilibrium model.
occurs with bad signals, the signal conjecture cannot be rejected. However, the results from SGAE changes are more consistent with the moral hazard conjecture than with the signal conjecture since the latter does not predict different patterns of SGAE changes from other types of expense changes.

The results suggest effects more pervasive, but less severe, than those anticipated by the literature on financial constraints. Previous literature focuses on market breakdown from anticipation of the moral hazard problem associated with low internal funds and relevant remedies. The novelty of this study is to apply insights from the theoretical literature on capital market imperfections and financial constraints to the empirical evidence of post-financing stock underperformance.

The remainder of the paper is organized as follows. Section 2 develops the hypotheses. Section 3 illustrates how the variables are measured. Section 4 discusses the sample formation. Section 5 reports the empirical tests and results. Section 6 concludes.

2 Development of Hypotheses

Issuing new securities to raise external funds are essential corporate activities for firms to operate, grow, and expand. Under the Modigliani and Miller (1958) assumptions, financing policies have no impact on firm value. However, when these assumptions are relaxed, firms’ financing activities are no longer irrelevant. In Appendix A, a simple model highlights the effects of stake changes when funds are raised externally and when incumbent shareholders are able to exert hidden actions to extract private benefit.

The model illustrates a threshold for the ratio of internal funds to external funds below which the moral hazard problem arises, when incumbent shareholders can extract private benefit. The economic intuition is that whenever incumbent shareholders are able to exert hidden actions, they

5 Examples include credit rationing resulting from anticipation of the agency costs associated with debt financing (Jaffee and Russell, 1976; Stiglitz and Weiss, 1981; Bester and Hellwig, 1987); the ramifications of insufficient financing caused by agency costs: investment-cash flow sensitivity (Fazzari, Hubbard, Petersen, Blinder, and Poterba, 1988; Lamont, 1997; Moyen, 2004) and amplification of the business cycle (Holmström and Weiss, 1985; Williamson, 1987; Bernanke and Gertler, 1989); and mechanisms to minimize this agency cost to avoid market breakdown, including screening, reputation based on credit ratings, financial intermediation, and delegated monitoring (Diamond, 1984, 1991; Bester, 1985; Besanko and Kanatas, 1993; Holmström and Tirole, 1997).

6 The model uses the ratio of internal funds to total funds for simplicity of derivation. Discussion of the ratio of internal funds to total funds is equivalent to the discussion of the ratio of internal funds to external funds.
might attempt to compensate for stake losses through private benefit extraction. Although extracting private benefit will jeopardize the firm’s future profit, incumbent shareholders will do so and sacrifice the firm’s total value when private benefit outweighs their share of profit decrease. In other words, incumbent shareholders face a tradeoff between the private benefit and the decrease in their share of the profit. The less the internal funds are, the smaller stake incumbent shareholders have, and the more likely their private benefit is to exceed the decrease in their slice of the profit. When internal funds are scarce, the incumbent shareholders do not care about decrease in profit as much as when internal funds are ample since the loss is now shared more amongst other parties. With low stake in the future financial outcome, the incumbent shareholders will exert negative externality and induce diversion of wealth from other investors.

In summary, when the ratio of internal funds to external funds is low enough, the moral hazard problem will arise. Private benefit extraction or less diligent behavior will decrease the resources of the firm, monetary-wise or human resources-wise. Decrease of the firm value and stock underperformance will then follow. Since there is a threshold below which incumbent shareholders’ incentive changes, the moral hazard-caused stock underperformance is more likely to be observed in firms with less internal funds. Thus, I form Hypothesis 1 as follows, stated in alternative form:

Hypothesis 1 Firms with a lower ratio of internal funds to external funds are more likely to experience post-financing stock underperformance.

Motivated by the moral hazard problem being modeled as private benefit extraction in literature such as Holmström and Tirole (1997) and Tirole (2006), I examine and compare the expense changes subsequent to external financing between firms with low internal funds and firms with more internal funds. I focus on SGAE because managers have more leeway in controlling this item. Since the firms I examine have raised net external funds, expansion is likely to follow. If economies of scale due to expansion is a dominant economic force subsequent to external financing, both types of firms will experience decrease in expenses. However, when the moral hazard problem is more likely to arise in firms with low internal funds, the increased agency costs will offset part of the cost advantage due to expansion. Thus, I develop Hypothesis 2 as follows, in the
alternative form:

Hypothesis 2 Subsequent to external financing, firms with a lower ratio of internal funds to external funds will experience less decreases in SGAE than firms with higher internal funds.

After firms issue new securities and raise external funds, the moral hazard problem associated with internal funds below the threshold can translate into future long-term stock underperformance through multiple paths. First, the extent of potential conflict and its total realized cost over the life of the investments might not be fully revealed at the time of financing. If this moral hazard problem is underestimated, shortfalls in future profits might surprise uninformed parties and contribute to long-term stock underperformance in the future.

Second, investors might be aware of the moral hazard problem and plan to use monitoring to ward off the problem, but the effectiveness of monitoring falls short of expectation. As discussed before, literature is rich in remedies to overcome the moral hazard problem caused by low internal funds to avoid market breakdown. One important mechanism is monitoring (Diamond, 1984, 1991; Besanko and Kanatas, 1993; Holmström and Tirole, 1997). I deem these mechanisms as *ex ante* commitment. However, the efficacy of monitoring is not assured *ex post*.

When the monitoring is not carried out as successfully as planned, the realization of the agency cost will be higher than anticipated, and stock price downward adjustment will follow.

Third, since the agency costs are not fully visible to outsiders, different opinions will more likely be formed around firms with potential problems. When the market has short-sale restrictions, negative opinions are less incorporated into the price than positive opinions. Miller (1977) was one of the first to recognize the implication of costly short-sale constraints on stocks with a wide divergence of opinion: stock will be overpriced when less optimistic investors cannot fully participate in setting the price. Temporary price inflation at the beginning will be gradually corrected when financial results are realized and when information is released. This leads to

7 For example, two important types of monitors in the market, financial analysts and credit rating agencies, are heavily criticized for their practice in the 2008 financial crisis and in some corporate collapses, like Enron’s. Even the SEC, the supposed ultimate regulator of the market, admits its failure to uncover Madoff’s Ponzi scheme despite numerous credible and detailed complaints, in a 22 page executive summary (http://www.sec.gov/news/studies/2009/oig-509-exec-summary.pdf).
long-term stock underperformance. Although Diamond and Verrecchia (1987) argue that the over-pricing cannot survive rational expectations, they acknowledge that short-sale constraints “reduce the speed of price adjustment, especially to bad news.” In addition, many empirical studies find evidence suggesting that dispersion of opinions with short-sale constraints contributes to long-term stock underperformance (Ackert and Athanassakos, 1997; Houge, Loughran, Suchanek, and Yan, 2001; Diether, Malloy, and Scherbina, 2002; Jones and Lamont, 2002; Boehme, Danielsen, and Sorescu, 2006).

All three paths have one common ingredient, which is information update. No matter whether it is because the market does not fully anticipate the moral hazard problem in firms with low internal funds, or because the market price does not fully incorporate related negative opinions, the market will update beliefs through informational events, such as earnings announcements. If the market’s downward revision can be triggered by earnings release, post-financing stock underperformance for firms with low internal funds should be stronger in this period than in non-earnings announcement periods.

Examining stock returns in different periods can also help shed some light on whether post-financing stock underperformance is simply a manifestation of a misspecified model that does not capture risk and expected return changes associated with financing. If misspecification of the expected return is the sole cause, the misspecification should apply similarly across the post-financing periods.

Based on the conjecture that firms with low internal funds are more plagued by the moral hazard problem and outside investors get more information regarding the costs of this problem during earnings announcement periods, I form Hypothesis 3 as follows, in alternative form:

Hypothesis 3 Firms with a lower ratio of internal funds to external funds experience stronger post-financing stock underperformance in earnings announcement periods than in non-earnings announcement periods.

Finally, I examine the information environment represented by analyst forecasts. Three facets of analyst forecasts are analyzed: analyst earnings forecast error, analyst forecast dispersion, and
analyst coverage.

If the market underestimates the agency costs for firms with low internal funds at the time of external financing and the market’s earnings expectation is related to analyst earnings forecasts (Brown, Hagerman, Griffin, and Zmijewski, 1987; Brown and Kim, 1991; Brown and Caylor, 2005), I expect to observe more over-optimistic earnings forecasts for these firms. This leads to Hypothesis 4a:

Hypothesis 4a Firms with a lower ratio of internal funds to external funds have more over-optimistic analyst earnings forecasts than firms with higher internal funds subsequent to external financing.

Since firms with low internal funds are subject to the moral hazard problem, these firms have an extra dimension for investors to consider when forming their opinions relative to firms with ample internal funds. In addition, the underlying problem for outsiders to estimate is hidden or manipulated. Thus, I expect to observe larger analyst opinion dispersion for firms with less internal funds. Larger analyst opinion dispersion, in turn, contributes to post-financing stock underperformance for these firms when short-sale constraints exist. Thus, I state Hypothesis 4b as follows:

Hypothesis 4b Firms with a lower ratio of internal funds to external funds have larger analyst forecast dispersion than firms with higher internal funds subsequent to external financing.

Literature shows that analyst coverage is a result of self-selection. McNichols and O’Brien (1997), among others, document that analysts are more likely to forecast for firms with favorable expectations because of various strategic concerns such as currying favor with management or generating trading commissions. Since firms with low internal funds are more likely to be plagued by moral hazard problems, these firms might attract fewer analysts to follow. Lower analyst coverage could in turn contribute to long-term stock underperformance for these firms. Hong, Lim, and Stein (2000) show that lower analyst coverage leads to slower information discovery and dissemination, especially for bad news. Thus, I form Hypothesis 4c as follows:
Hypothesis 4c Firms with a lower ratio of internal funds to external funds have lower analyst coverage than firms with higher internal funds subsequent to external financing.

3 Measurement of Variables

To measure the variables needed for testing the hypotheses, I use the Compustat annual files for accounting variables, the Compustat quarterly files for earnings announcement dates, the CRSP monthly returns files for return measurement, and the I/B/E/S summary files for analyst data. A timeline for the variable measurement is provided in Figure 3.

3.1 External Financing Activities

I follow Bradshaw et al. (2006) to construct comprehensive measures for net external financing (XF), net equity financing (ΔE), and net debt financing (ΔD) by using the statement of cash flows. I define year 0 as the fiscal year when XF, ΔE, and ΔD are measured. These measurements are defined as follows:

$$XF = \Delta E + \Delta D.$$ (1)

Where,

$$\Delta E = \text{Compustat item 108, cash from sale of common/preferred stock}$$

$$- \text{Compustat item 115, cash purchases of common/preferred stock}$$

$$- \text{Compustat item 127, cash dividends paid,}$$ (2)

and

$$\Delta D = \text{Compustat item 111, cash from sale of long-term debt}$$

$$- \text{Compustat item 114, cash repayments of long-term debt}$$

$$- \text{Compustat item 301, change in current debt,}$$ (3)

8 'Year' means fiscal year unless calendar year is used explicitly.
Since I focus on firms with net external funds raised, I require ΔE and ΔD to be non-negative and XF to be positive. All financial statement variables used in this study are deflated by total assets (Compustat item 6) at the beginning of year 0.

The comprehensive measurements of net equity financing and net debt financing bear the benefit suggested by Bradshaw et al. (2006): they capture a firm’s entire portfolio of corporate financing activities when a firm undertakes transactions with opposite directions (raising funds and distributing cash), within financing categories or across financing categories, and at the same time or within a short period of time. Fama and French (2005) provide evidence that firms issue and repurchase equity in the same year with a surprisingly high frequency. Billett, Flannery, and Garfinkel (2008) show that nearly two fifths of their sample firms are associated with the issuance of two or more claim types. Also, firms issue debt and retire debt concurrently, issue stock to retire debt, and borrow to repurchase stock or distribute dividends (Ofer and Thakor, 1987).

3.2 Internal funds

Internal funds, relative to external funds, is measured as the ratio of internal funds at the beginning of year 0 (IF) to external funds raised in year 0 (XF). Internal funds are measured by three proxies. The first proxy is cash flow from operations (Compustat item 308) from year -1, noted as CFO_{-1}. Cash flow from operations is the main source whereby firms create wealth and accumulate internal funds, and it is fairly persistent over time (Sloan, 1996). Thus, cash flow from operations is one of the most commonly used measurements for the availability of internal funds (Fazzari et al., 1988; Gilchrist and Himmelberg, 1995; Lamont, 1997; Shyam-Sunder and Myers, 1999; Frank and Goyal, 2003). The other two measurements are book value of common equity (Compustat item 60) at the beginning of year 0, noted as EQ_{-1}, and cash and short-term investment (Compustat item 1) at the beginning of year 0, noted as $Cash_{-1}$. The ratio of internal funds to external funds, which I call the internal funds ratio, is defined as follows.

$$IFR_{CFO} = \frac{CFO_{-1}}{XF},$$

(4)
\[IFR_{EQ} = \frac{EQ_{t-1}}{XF}, \]
\[IFR_{Cash} = \frac{Cash_{t-1}}{XF}. \]

3.3 Long-term Stock Performance

3.3.1. Post-financing Raw Returns

Stock return data are from the CRSP monthly files. I choose buy-and-hold return (BHR) over 3 years after external financing activities as the long-term stock performance.\(^9\) Returns are compounded for 36 months starting 3 months after the end of fiscal year 0. The starting month is chosen to allow investors to get sufficient financial information and also to accommodate the decomposition of earnings announcement period returns and non-earnings announcement period returns needed in testing Hypothesis 3.\(^10\) I define \(R_m \) as raw return including distributions for the \(m \)th month after the end of fiscal year 0. The 3-year total raw post-financing return after year 0 is defined as:

\[BHR = \left[\prod_{m=1}^{36} (1 + R_{m+3}) \right] - 1. \]

When a stock is delisted before the 3-year period, I apply the CRSP delisting return in the delisting month. Following Shumway (1997), if the delisting return is missing, I substitute -0.3 if the delisting is due to poor performance (delisting codes 500 and 520–584), and 0 otherwise. Return compounding ends the last day of CRSP reported trading or the last day of the 3-year period, whichever is earlier. Evidence in Barber and Lyon (1997) suggests that long-run results are generally robust to truncating versus filling in the missing returns after delisting. This method of compounding returns is consistent with the long-window methods used in previous research (Loughran and Ritter, 1995; Spiess and Affleck-Graves, 1995; Dichev and Piotroski, 1999).

\(^9\) I have used different horizons from 1 to 5 years as the return periods. The results do not change qualitatively.
\(^{10}\) I have used 4 months after the end of fiscal year 0 with no qualitative change in results.
3.3.2. Abnormal Returns

I define buy-and-hold abnormal return (\(BHAR\)) relative to the return of a benchmark portfolio (\(BENCH\)) (Lyon, Barber, and Tsai, 1999). I construct benchmark portfolios by matching on size and book-to-market ratio (\(B/M\)). Going beyond controlling just for firm size is important. Ritter (2003) notes that “(only) using a size benchmark, however, introduces a confounding effect. Issuing firms tend to be growth firms, and nonissuers tend to be value firms.” Additionally, Barber and Lyon (1997) show that controlling for size and book-to-market yields well-specified long-run test statistics in all of their sampling situations. To construct the benchmark portfolios, I adapt the method from Daniel, Grinblatt, Titman, and Wermers (1997). I first assign each stock to a size decile at the end of June of calendar year 0. The end of June of calendar year 0 is chosen to assure size is available for all firms for fiscal year 0 since firms have different fiscal year ending months. The size breakpoints are market equity deciles formed based on all firms in this sample on NYSE at the end of June of calendar year 0. Then, within each size decile, I rank all the stocks based on their book-to-market ratios, and assign them to book-to-market deciles. The \(B/M\) breaking points are based on all firms within each size deciles no matter whether they are on NYSE, AMEX or Nasdaq. The book-to-market ratio is the book equity (Compustat item 216 + item 74 + item 208 - item 56) for the fiscal year end previous to June of calendar year 0 divided by market equity for December of calendar year -1.\(^{11}\)

The benchmark adjusted buy-and-hold abnormal return in the 3-year period after year 0 is defined as:

\[
BHAR = BHR - BENCH, \tag{8}
\]

where \(BENCH\) is the 3-year buy and hold return of the benchmark portfolio. \(BENCH\) is calculated by compounding the benchmark portfolio’s monthly returns, defined as the value weighted return of all firms in this portfolio, where the value is the firms’ market equity at the beginning of each month. Updating the value each month helps alleviate the rebalancing concern in Lyon et al.\(^{11}\)

\(^{11}\) Instead of book-to-market ratio, I also used industry adjusted book-to-market ratio to rank the stocks in untabulated tests. The regression results are similar. The correlation between book-to-market ratio and external financing is much stronger than the correlation between industry adjusted book-to-market ratio and external financing. Thus, I choose book-to-market ratio over industry adjusted book-to-market ratio.
I decompose BHR, defined in (7), as follows,

$$BHR = (1 + BHRE) \times (1 + BHRNE) - 1,$$

where $BHRE$ is the buy-and-hold return for earnings announcement periods during the 3-year period, and $BHRNE$ is the buy-and-hold return for non-earnings announcement periods during the 3-year period.

An earnings announcement period is a three-trading day window centered around the earnings announcement date. Suppose the 3-year post-financing period contains T total trading days and I denote r_d as day d raw return including distributions, the return realized during earnings announcement windows is

$$BHRE = \prod_{d=1}^{T} (1 + r_d \times D_{d,earn}) - 1,$$

where $D_{d,earn} = 1$ if day d falls within an earnings announcement window, and $D_{d,earn} = 0$ otherwise. The 3-year post-financing period contains 12 earnings announcements and thus 36 trading days in total when no earnings announcement is missing.\(^{12}\)

The return for non-earnings announcement periods, $BHRNE$, compounds all other days’ returns. Because the total BHRs are the compounding of returns for earnings announcement periods and non-earnings announcement periods, I can calculate $BHRNE$s as follows:

$$BHRNE = \frac{1 + BHR}{1 + BHRE} - 1.$$

\(^{12}\)I do not require firms to have all earnings announcement dates available to be included in the sample. I compound the return whenever there is a recorded earnings announcement. This yields less than 36 days when there are missing earnings announcements. I require the earnings announcement date to be within a year after the correspondent fiscal quarter end. For example, if a firm’s earnings announcement date for fiscal quarter ended June 30, 2000 is after June 30, 2001, I treat it as if there is no earnings announcement. These two situations work against the hypothesis because the length of the earnings announcement periods is shorter and the market reaction around the earnings announcement periods will be harder to detect.
The same analysis decomposes benchmark portfolio returns as follows into benchmark portfolio returns during earnings announcement periods \(BENCHE\) and non-earnings announcement periods \(BENCHNE\):

\[
BENCHE = \left[\prod_{d=1}^{T} \left(1 + BENCH_d \times D_{d,earn} \right) \right] - 1,
\]

and

\[
BENCHNE = \frac{1 + BENCH}{1 + BENCHED} - 1. \tag{13}
\]

Buy-and-hold abnormal return during the earnings announcement period \(BHARE\) and buy-and-hold abnormal return during the non-earnings announcement period \(BHARNE\) are defined as follows:

\[
BHARE = BHRE - BENCHED, \tag{14}
\]

and

\[
BHARNE = BHRNE - BENCHNE. \tag{15}
\]

3.4 Expense Changes

To examine the post-financing expense changes, SGAE are used to detect traces of the moral hazard problem, and total expenses are used as a benchmark. They are measured as follows:

\[
SGAE = \text{Compustat item 189, selling, general, and administrative expenses} \tag{16}
\]

and

\[
Exp = \text{Compustat item 12, sales} - \text{Compustat item 172, net income}. \tag{17}
\]

These measurements are scaled by the total assets at the beginning of the fiscal year.
Since the post-financing return period is 3 years, expense changes are measured as the average annual change from year 0 over the 3 year-period:

$$\Delta SGA E = \frac{(SGAE_1 - SGA E_0) + (SGAE_2 - SGA E_0) + (SGAE_3 - SGA E_0)}{3}, \quad (18)$$

and

$$\Delta Exp = \frac{(Exp_1 - Exp_0) + (Exp_2 - Exp_0) + (Exp_3 - Exp_0)}{3}, \quad (19)$$

I require at least one year of data after year 0. If the expense item is missing for one or two years after year 0, the expense change will be the average of non-missing years’ changes.

3.5 Analyst Earnings Forecasts

I obtain forecasts of 1-year-ahead annual EPS from I/B/E/S. To match the compounding start date of the buy-and-hold returns, I take the analyst earnings forecast data in the 4th month after the previous fiscal year-end.

Analyst forecast error, by convention, is defined as actual realized earnings minus the mean consensus analyst earnings forecast, scaled by the stock price at the end of the forecast month. Hence, negative forecast error means optimistic analyst forecasts, while positive forecast error means pessimistic analyst forecasts. Since I study the 3-year period after external financing activities, I cover analyst data in these 3 years as well. I define FE_1 as the 1-year-ahead forecast error for year 1, FE_2 as the 1-year-ahead forecast error for year 2, and FE_3 as the 1-year-ahead forecast error for year 3. FE is defined as the average of the non-missing values of FE_1, FE_2, and FE_3.

Analyst forecast standard deviation is defined as the standard deviation of all available analyst forecasts scaled by the stock price at the end of the forecast month. Boehme et al. (2006) suggest that the most common proxy for dispersion of opinion is the standard deviation in analysts forecasts and Diether et al. (2002) show that analyst forecast dispersion does not proxy for risk. $FSTD_1$, $FSTD_2$, and $FSTD_3$ are the analyst forecast standard deviations in the corresponding years. $FSTD$ is the average of the non-missing values of $FSTD_1$, $FSTD_2$, and $FSTD_3$.

Analyst coverage is the number of analysts providing an annual earnings forecast.
Lundholm, 1996). \(FNUM_1 \), \(FNUM_2 \), and \(FNUM_3 \) are the analyst coverages in the corresponding years. \(FNUM \) is the average of the non-missing values of \(FNUM_1 \), \(FNUM_2 \), and \(FNUM_3 \). In the regression, \(LgFNUM \), natural log of \(FNUM \), is used as the dependent variable.

3.6 Control Variables

When examining post-financing returns conditioned on internal funds (Hypotheses 1 and 3), I control for cash flow from operation of year 0 (\(CFO_0 \)), the accrual component of the earnings of year 0 (\(ACCR_0 \)), discretionary current accruals of year -1 (\(DCAC_{-1} \)), and discretionary long-term accruals of year -1 (\(DLAC_{-1} \)). Following Hribar and Collins (2002), I measure accruals using data from the statement of cash flows instead of successive changes in balance sheet accounts to avoid measurement error due to acquisitions, divestitures, and accounting changes. \(ACCR_0 \) is measured as income before extraordinary items (Compustat item 123) minus \(CFO_0 \) (Compustat item 308). I follow Teoh, Welch, and Wong (1998b) to measure \(DCAC_{-1} \) and \(DLAC_{-1} \). For details, please check Appendix A of Teoh et al. (1998b).

In tests for the association between external financing and \(\Delta SGAE \) or \(\Delta Exp \) (Hypothesis 2), I control for changes in sales (Compustat item 12) and changes in research and development expense (Compustat item 46). They are defined as follows:

\[
\Delta Sales = \frac{(Sales_1 - Sales_0) + (Sales_2 - Sales_0) + (Sales_3 - Sales_0)}{3}, \tag{20}
\]

\[
\Delta R&D = \frac{(R&D_1 - R&D_0) + (R&D_2 - R&D_0) + (R&D_3 - R&D_0)}{3}, \tag{21}
\]

I require at least one year of data after year 0. If the item is missing for one or two years after year 0, the change will be the average of non-missing years’ changes.

When examining analyst forecast data, I control for firm size (\(LgSize \)) and book-to-market ratio (\(B/M \)). \(Size \) is the market value of equity, defined as stock price multiplying shares outstanding at the end of fiscal year 0. \(LgSize \) is natural log of \(Size \). \(B/M \) is measured as the book equity (Compustat item 216 + item 74 + item 208 - item 56) divided by market equity at the end of
fiscal year 0.

4 Sample and Data

The sample period is from fiscal year 1988 to 2005. The starting date is determined by availability of cash flow from operations in the statement of cash flows. The ending date reflects availability of sufficient post-financing returns. Utility firms (SIC code 4900–4999) and financial firms (SIC code 6000–6999) are excluded since these firms are regulated and/or the nature of their external financing activities is different from that of firms in the other industries. The sample has 13,799 firm-year observations without requiring analyst forecast data. Variables are winsorized at 0.5% and 99.5% to mitigate the impact of data errors and outliers on the analysis.

Table 1 presents univariate statistics and correlations. Panel A reports univariate statistics. For firms’ characteristics, the mean and median of the size (market value) are $586 million and $92 million. Firms raising external funds are smaller compared to the average size, $1,290 million, of firms with no restriction to be net external fund raisers. Size varies considerably in the sample as evidenced by the large standard deviations. The mean and median of the book-to-market ratio are 0.611 and 0.436. They are smaller than the mean and median book-to-market ratio, 0.744 and 0.538, of the firms with no restriction to be net external fund raisers. For external financing variables, on average, net external financing is 26.0 percent of the total assets, net equity financing is 13.4 percent of the total assets, and net debt financing is 12.6 percent of the total assets. Consistent with the findings in Frank and Goyal (2003), the medians for external financing activities are smaller for both equity and debt. The standard deviations of ΔE and ΔD are 0.406 and 0.262, respectively, indicating that variation is greater in the equity component of financing. Asset-scaled expenses decrease subsequent to external financing, likely due to the economies of scale after expansion. Post-financing stock performance is on average negative, with a mean of -0.049 and a median of -0.341.

Panel B reports Pearson and Spearman correlations. Several of the correlations are noteworthy. First, the Pearson correlation is -0.178 between B/M and ΔE, and it is -0.085 between B/M and
These correlations indicate that growth firms tend to raise more external funds. Second, there is a strong negative correlation between external financing activities and expense changes. For example, the Pearson correlation is -0.450 and the Spearman correlation is -0.396 between XF and $\Delta SGAE$. Finally, consistent with previous research, the correlations between the external financing activities and subsequent buy-and-hold abnormal return are negative. Overall, the sample statistics correspond quite closely with those in Bradshaw et al. (2006).

5 Empirical Tests and Results

5.1 Test of Hypothesis 1: Post-Financing Stock Underperformance Conditioned on Internal Funds Ratio

Hypothesis 1 predicts that the negative association between long-term stock performance and financing activity is dependent on internal funds ratio. To test Hypothesis 1, I rank all firms each year into two groups by internal funds ratio IFR_{CFO}, defined in (4) as the ratio of internal funds to net external financing. I refer to the group with a ratio lower than the median ratio as the IFR_L group, and the group with a ratio higher than or equal to the median ratio as the IFR_H group.

First, I plot stock performance for portfolios in the IFR_H group and the IFR_L group. To form the portfolios, I rank XF each year separately in these groups. Within each group, firms are assigned in equal numbers to 10 portfolios based on their rank. I refer to the portfolio with the largest external financing amount as the top issuer portfolio. I calculate mean buy-and-hold abnormal returns for each portfolio for ten years, starting four years before year 0.

To have a baseline to compare, I present the plot of top issuers from Bradshaw et al. (2006) in Figure 4A. I plot the top issuers from both groups in this study in Figure 4B. The top issuer portfolio from the IFR_L group exhibits a clear downward trend in its return subsequent to year 0, the external financing measurement year. On the other hand, the top issuer portfolio from the IFR_H group does not have this trend. When I plot the average return of these two portfolios, the return pattern resembles that of the issuers from Bradshaw et al. (2006). These results illustrate that the post-financing stock underperformance observed for the issuers in literature is mainly
associated with the \(IFR_H \) group.

Furthermore, to compare the stock performance of the \(IFR_H \) group and the \(IFR_L \) group, I pick one portfolio from each group with similar \(XF \), the top issuer portfolio from the \(IFR_H \) group with \(XF=0.52 \) and the 3rd top issuer portfolio from the \(IFR_L \) group with \(XF=0.45 \). I plot the portfolio’s stock performance in Figure 5. Although the portfolio from the \(IFR_H \) group has slightly higher external funds raised than the portfolio from the \(IFR_L \) group, the portfolio from the \(IFR_H \) group does not exhibit downward stock performance as does the portfolio from the \(IFR_L \) group. The difference in the two portfolios’ stock performance subsequent to external financing is consistent with the prediction of Hypothesis 1.

Secondly, in addition to plotting stock performance, I apply regression analysis to test Hypothesis 1. I fit the following cross-sectional regressions to all firms each year,

\[
BHAR = \alpha_0 + \alpha_1 XF + \alpha_2 CFO_0 + \alpha_3 ACCR_0 + \alpha_4 DCAC_{-1} + \alpha_5 DLAC_{-1} + Industry \ Dummies + \nu_n, \tag{22}
\]

\[
BHAR = \alpha_0 + \alpha_1 \Delta E + \alpha_2 \Delta D + \alpha_3 CFO_0 + \alpha_4 ACCR_0 + \alpha_5 DCAC_{-1} + \alpha_6 DLAC_{-1} + Industry \ Dummies + \nu_n. \tag{23}
\]

I control for \(CFO_0 \) and \(ACCR_0 \) in the regression since Cohen and Lys (2006) suggest that analysis of post-financing returns is closely related to the accrual anomaly literature (Sloan, 1996): the cash flow identity implies that financing and operating cash flows are negatively related. Both \(CFO_0 \) and \(ACCR_0 \) are controlled because Sloan (1996) suggests that accrual anomaly is underestimation of the persistence of the cash flow component of earnings and overestimation of the persistence of the accrual component of earnings. In addition, controlling for \(CFO_0 \) and \(ACCR_0 \) also helps control for the implication of previous operating performance on the post-financing returns.

I also control for \(DCAC_{-1} \) and \(DLAC_{-1} \) because literature suggests that earnings management
before issuing is associated with pre-financing stock price run-up and post-financing stock price downward adjustment (Teoh, Welch, and Wong, 1998a; Teoh et al., 1998b; Jo and Kim, 2007; Chen, Gu, and Tang, 2009).

Table 2 shows the means of the time-series coefficients from annual regressions following the Fama and MacBeth (1973) procedure. The associated t-statistics are based on the standard error of the annual coefficient estimates adjusted by the Newey-West procedure (Newey and West, 1987). Fama-French industry dummies are used to control for industry effect and the associated coefficients are omitted in the table.

Panel A of Table 2 reports the result for regression (22). I first conduct the regression on the whole sample without including control variables CFO_0, $ACCR_0$, $DCAC_{-1}$, and $DLAC_{-1}$. The test is comparable to the test in Table 5 of Bradshaw et al. (2006), and the results are similar. The coefficient on net external financing, XF, is negative (-0.189) and statistically significant (t=10.61).

I then add the control variables into the regression. The coefficient on XF is less negative (-0.138), but still significant (t=6.49). These results are consistent with the stock underperformance subsequent to external financing activities documented by literature. As for control variables, the coefficient on CFO_0 is significantly positive, which is consistent with the evidence in Sloan (1996) that investors underestimate the persistency of the cash flow component of earnings. However, the coefficient on $ACCR_0$ is not significantly different from 0. This result is similar to the findings in Desai, Rajgopal, and Venkatachalam (2004) that after controlling for the cash flow-to-price ratio, they do not observe any relation between accruals and future abnormal returns.

I illustrate the difference between the IFR_L group and the IFR_H group by conducting the regression on each group separately. The results for the IFR_L group are similar to the results for the whole sample: the coefficient on XF is significantly negative. But for the IFR_H group, the coefficient on XF is not significantly different from 0. The results are consistent with the prediction of Hypothesis 1 that firms with low internal funds are more likely to experience stock underperformance in the future.

Panel B of Table 2 reports the result for regression (23) with external financing decomposed into its components ΔE and ΔD. For the whole sample and the IFR_L group, similar to the
results of Bradshaw et al. (2006), both ΔE and ΔD have significant negative coefficients. For the IFR_H group, however, both coefficients on ΔE and ΔD are no longer significant. One result worth noting is that for the whole sample, the coefficient on ΔD (-0.087) is more negative than the coefficient on ΔE (-0.232) and the difference is significant ($F=5.532$ and $p=0.02$). This is consistent with the findings in Bradshaw et al. (2006) and Cohen and Lys (2006). This pattern also holds for the IFR_L group. Since dilution of incumbent shareholders’ interest is commonly understood to be connected with external equity issues, the discrepancy between the anticipation of the moral hazard problem association with low internal funds ratio and the real level of the problem maybe less for external equity issues than for external debt issues. The analysis of analyst forecast data in the tests for Hypothesis 4 will help shed some light on the comparison of investors’ anticipation more directly.

In Table 3, I modify (22) and (23) to include a dummy variable specification nesting the IFR_L group and IFR_H group. I fit the following cross-sectional regressions to all firms each year,

$$BHAR = \alpha_0 + \alpha_{1,L}IFR_LXF + \alpha_{1,H}IFR_HXF + \alpha_2CFO + \alpha_3ACCR + \alpha_4DCAC_{-1} + \alpha_5DLAC_{-1} + Industry\ Dummy + \nu,$$

$$BHAR = \alpha_0 + \alpha_{1,L}IFR_L\Delta E + \alpha_{2,L}IFR_L\Delta D + \alpha_{1,H}IFR_H\Delta E + \alpha_{2,H}IFR_H\Delta D + \alpha_3CFO + \alpha_4ACCR + \alpha_5DCAC_{-1} + \alpha_6DLAC_{-1} + Industry\ Dummy + \nu,$$

where $IFR_L = 1$ if a firm is in the IFR_L group and zero otherwise, and $IFR_H = 1$ if a firm is in the IFR_H group and zero otherwise. Therefore, the coefficient before IFR_LXF, $IFR_L\Delta E$, or $IFR_L\Delta D$ is the association of stock performance and external financing for the IFR_L group; while the coefficient before IFR_HXF, $IFR_H\Delta E$, or $IFR_H\Delta D$ is the association of stock performance and external financing for the IFR_H group.

Besides using cash flow from operations of year -1 (CFO_{-1}) as a proxy for internal funds to calculate the internal funds ratio, I use two additional proxies: book value of common equity at
the beginning of year 0 \((EQ_{-1})\) and cash and short-term investment at the beginning of year 0 \((Cash_{-1})\). Table 3 shows the means of the time-series coefficients from annual regressions following the Fama and MacBeth (1973) procedure. The associated t-statistics are based on the standard error of the annual coefficient estimates adjusted by the Newey-West procedure (Newey and West, 1987). Fama-French industry dummies are used to control for industry effect and the associated coefficients are omitted in the table. Panel A of Table 3 reports the result for regression (24). Panel B of Table 3 reports the result for regression (25) with external financing decomposed into its components \(\Delta E\) and \(\Delta D\). With all three proxies for the internal funds ratio, the coefficients on \(IFR_L X F\), \(IFR_L \Delta E\), and \(IFR_L \Delta D\) are significantly negative, while the coefficients on \(IFR_H X F\), \(IFR_H \Delta E\), and \(IFR_H \Delta D\) are not significantly different from zero.

Overall, consistent with Hypothesis 1, the results document the post-financing stock underperformance for firms with a low internal funds ratio, but show no association between future stock performance and external financing activities for firms with a high internal funds ratio.

5.2 Test of Hypothesis 2: Post-Financing Expense Changes

Hypothesis 2 suggests that firms with a low internal funds ratio will experience a smaller decrease in SGAE than firms with a high internal funds ratio subsequent to net external financing. I fit the following cross-sectional regressions to all firms each year,

\[
\begin{align*}
\text{Expense Changes} &= \alpha_0 + \alpha_{1,L} IFR_L X F + \alpha_{1,H} IFR_H X F + \Delta Sales + \Delta R&D \\
&+ \text{Industry Dummies} + \nu_n, \quad (26)
\end{align*}
\]

\[
\begin{align*}
\text{Expense Changes} &= \alpha_0 + \alpha_{1,L} IFR_L \Delta E + \alpha_{2,L} IFR_L \Delta D + \alpha_{1,H} IFR_H \Delta E + \alpha_{2,H} IFR_H \Delta D \\
&+ \Delta Sales + \Delta R&D + \text{Industry Dummies} + \nu_n. \quad (27)
\end{align*}
\]

where \(\text{Expense Changes}\) is \(\Delta SGAE\) or \(\Delta Exp\). \(\Delta SGAE\) is the focus of this test, while \(\Delta Exp\) serves as a baseline. Because company-sponsored research and development expense is included
in SGAE, I control for $\Delta R&d$ in the regression to avoid the influence from this item. The results with or without controlling for $\Delta R&d$ are qualitatively similar.

Table 4 shows the means of the time-series coefficients from annual regressions following the Fama and MacBeth (1973) procedure. The associated t-statistics are based on the standard error of the annual coefficient estimates adjusted by the Newey-West procedure (Newey and West, 1987). Fama-French industry dummies are used to control for industry effect and the associated coefficients are omitted in the table. The comparison between the coefficients on external financing activities of the IFR_L group and the IFR_H group is based on the time-series coefficients from annual regressions and the F-statistics are reported in the last column(s).

The first thing worth noting in the results is that most coefficients on external financing variables are significantly negative, illustrating a decrease in expenses subsequent to external financing. The force affecting the changes could be economies of scale subsequent to expansion by using the net external funds raised.

Second, when the dependent variable is $\Delta SGAE$, the coefficients on external financing variables are significantly less negative in the IFR_L group than in the IFR_H group. For example, the coefficient is -0.085 on $IFR_L XF$ for the IFR_L group, while it is -0.105 for the IFR_H group; the difference is significant (F=10.354). When the net external financing is decomposed into equity and debt financing, the pattern still holds. For example, the coefficient is -0.089 on $IFR_L \Delta E$ for the IFR_L group, while it is -0.116 for the IFR_H group; the difference is significant (F=8.032). In summary, the results show that the decrease in SGAE subsequent to external financing is smaller in the IFR_L group than that in the IFR_H group.

Third, when the dependent variable is ΔExp, the coefficients on external financing activity variables are no longer less negative in the IFR_L group than in the IFR_H group. For example, the coefficients on debt financing for the IFR_L group and for the IFR_H group are not significantly different, while the coefficient on equity financing is significantly negative for the IFR_L group but not significantly different from 0 for the IFR_H group.

In summary, the smaller decrease of expenses in the IFR_L group concentrated in $\Delta SGAE$ is consistent with the moral hazard prediction in the IFR_L group since private benefit extraction
will most likely be buried in SGAE and offset the effect of economies of scale.

5.3 Test of Hypothesis 3: Post-Financing Stock Underperformance During (Non-)Earnings Announcement Periods

Hypothesis 3 predicts that post-financing stock underperformance is stronger during earnings announcement periods than during non-earnings announcement periods. To test Hypothesis 3, I use the same specification as in (24) and (25) but I change the dependent variables to \(BHARE \), buy-and-hold abnormal returns during earnings announcement periods, and \(BHARNE \), buy-and-hold abnormal returns during non-earnings announcement periods.

Table 4 reports the results. Panel A of Table 4 has net external financing as the independent variable. For the \(IFR_L \) group, the coefficients on \(IFR_L XF \) are significantly negative in earnings announcement periods and non-earnings announcement periods. In contrast, for the \(IFR_H \) group, these coefficients are not significant. When the dependent variable is \(BHARE \), the coefficient on \(IFR_L XF \) is -0.024. When the dependent variable is \(BHARNE \), the coefficient on \(IFR_L XF \) is -0.116. The ratio between these two coefficients, 1:5, is much higher than the ratio between the earnings announcement period length (12 trading days a year) and the non-earnings announcement period length (238 trading days a year), 1:20. This result is consistent with the findings from Jegadeesh (2000) and Denis and Sarin (2001) that there is a disproportionately large portion of long-run post-SEO abnormal stock returns around earnings announcements. Panel B of Table 4 reports the results when net external financing is decomposed into its components \(\Delta E \) and \(\Delta D \). The results show a similar pattern, that the association between stock underperformance and external financing activities is more intense during earnings announcement periods.

In summary, the concentration of the association between stock underperformance and external financing activities in the earnings announcement periods shows that the stock reaction subsequent to the external financing is not homogenous across the time periods, and it is much more stronger when the investors get new information from the earnings release and update their beliefs. The non-homogenous reaction is not consistent with lower systematic risk as the only cause for post-financing stock underperformance. Furthermore, the more intense stock reaction
during earnings announcement periods only occurs in the IFR_L group, which lends support for the moral hazard problem predicted for this group.

5.4 Test of Hypothesis 4: Post-Financing Analyst forecasts

Hypothesis 4 predicts the IFR_L group, compared to the IFR_H group, has a weaker information environment represented by analyst forecasts: higher analyst forecast error, larger analyst forecast dispersion, and lower analyst coverage. Since analyst data are needed for Hypothesis 4, yet not every firm in the whole sample is followed by analysts, the sample used to conduct tests related to forecast error is a subset of the whole sample. The Hypothesis 4 sample has 7,866 firm-year observations, which is 57% of the whole sample. Because only firms with more than one analyst forecasts will have the forecast standard deviation, the sample to conduct tests related to the forecast standard deviation is further reduced to 6,547 firm-years.

To test Hypothesis 4, I use the same cutoff point of IFR_{CFO} from the whole sample to categorize IFR_H group and IFR_L group. Hence, division of the Hypothesis 3 sample is consistent with the division of the whole sample. In other words, the $IFR_H (IFR_L)$ group in the Hypothesis 4 sample is a subset of the $IFR_H (IFR_L)$ group in the whole sample. Within the Hypothesis 4 sample, the IFR_L group contains 3,359 firm-year observations and the IFR_H group contains 4,507 firm-year observations. Thus, instead of containing equal number of firm-year observations, the IFR_H group has approximately one-third more observations than the IFR_L group. This is consistent with the Hypothesis 4 prediction that the IFR_L group is followed less by analysts.

I fit the following cross-sectional regressions to all firms each year,

$$\text{Analyst Measurement} = \alpha_0 + \alpha_{1,L} IFR_L X + \alpha_{1,H} IFR_H X + \text{LgSize} + B/M + \text{Industry Dummies} + \nu_n, \quad (28)$$

$$\begin{align*}
\text{Analyst Measurement} &= \alpha_0 + \alpha_{1,L} IFR_L \Delta E + \alpha_{2,L} IFR_L \Delta D + \alpha_{1,H} IFR_H \Delta E + \alpha_{2,H} IFR_H \Delta D \\
&\quad + \text{LgSize} + B/M + \text{Industry Dummies} + \nu_n. \quad (29)
\end{align*}$$
where Analyst Measurement is FE, $FSTD$, or $LgFNUM$. $LgSize$ and B/M are control variables for firm size and book-to-market ratio since literature suggests they are important determinants for analyst forecast error, dispersion, and coverage (Hong et al., 2000). Table 6 shows the means of the time-series coefficients from annual regressions following the Fama and MacBeth (1973) procedure. The associated t-statistics are based on the standard error of the annual coefficient estimates adjusted by the Newey-West procedure (Newey and West, 1987). Fama-French industry dummies are used to control for industry effect and the associated coefficients are omitted in the table.

Panel A of Table 6 has net external financing as the independent variable. When FE is the dependent variable, the coefficient on IFR_LXF is significantly negative, while the coefficient on IFR_HXF is not significant. Since a more negative FE means more optimistic forecast error, the result shows that analysts are more optimistic for the IFR_L group than for the IFR_H group. The results are consistent with the prediction that the market underestimates agency costs associated with the IFR_L group.

When $FSTD$ is the dependent variable, the coefficient on IFR_LXF is significantly positive, while the coefficient on IFR_HXF is not significant. This result shows that analyst forecast dispersion is larger for the IFR_L group than for the IFR_H group. The moral hazard problem associated with the IFR_L group can induce opinion dispersion. In turn, with short-sale restrictions in the market, large opinion dispersion can be translated into temporarily inflated stock price and subsequent stock underperformance.

When $LgFNUM$ is the dependent variable, the coefficient on IFR_LXF is not significant, while the coefficient on IFR_HXF is significantly positive. This result shows that analyst coverage is lower for the IFR_L group than for the IFR_H group. In addition, the mean and median of the analyst coverage for the IFR_L group (4.95 and 3) are both lower than the mean and median of the analyst coverage for the IFR_H group (7.06 and 5). The lower coverage for the IFR_L group is consistent with the self-selection hypothesis suggested by McNichols and O’Brien (1997) that analysts tend to avoid forecasting for firms with less favorable expectations. On the other hand, lower analyst coverage will slow down the discovery and dissemination of the information.
related to agency cost for the IFR_L group.

Panel B of Table 4 reports the results when net external financing is decomposed into its components ΔE and ΔD. The results show a pattern of difference between the IFR_L group and the IFR_H group similar to that in Panel A. In addition, the magnitude of the coefficient on $IFR_L \Delta D$ is higher than the magnitude of the coefficient on $IFR_L \Delta E$ when the dependent variable is FE or $FSTD$. This result echoes the result in Table 2 that the coefficient on $IFR_L \Delta D$ is more negative than the coefficient on $IFR_L \Delta E$ when $BHAR$ is the dependent variable. This is consistent with the conjecture that analyst forecast error and forecast dispersion are related to the stock performance.

In summary, the results illustrate that the IFR_L group has a weaker information environment represented by analyst forecasts, which in turn might help foster the post-financing stock underperformance for these firms.

6 Conclusion

This study suggests a cause for stock underperformance subsequent to external financing activities: the moral hazard problem with the current shareholders when the internal funds are diluted by external funds, either new equity or new debt. The empirical evidence supports this conjecture since the post-financing stock underperformance is mainly associated with the IFR_L group, firms with low internal funds relative to external funds.

Furthermore, although SGAE decrease for both firms with low internal funds and firms with high internal funds, the decrease is significantly less in the former. This finding lends evidence to the private benefit extraction related to the moral hazard problem in firms with low internal funds.

In addition, long-term stock underperformance subsequent to external financing activities is more intense around the earnings announcement dates than during non-earnings announcement periods. This test helps differentiate two main streams of reasons for “the new issues puzzle”: investors’ disappointment and systematic risk. The stronger reaction during earnings announce-
ment periods indicates that new issue-related long-term abnormal return is more likely to be caused by the informational update of the market expectation during eventful periods. The results also support the potential moral hazard problem in firms with a low internal funds ratio.

Last, I use analyst forecasts to describe the market expectation more directly. I find that, for firms with low internal funds, analyst forecasts are more over-optimistic, analyst forecast dispersion is larger, and there are fewer analysts following these firms. The moral hazard problem in firms with low internal funds can induce these results, contributing to the post-financing stock underperformance of these firms.

Overall, the results complement each other and lend evidence to the influence external financing has on the incentives and behavior of the incumbent shareholders when the internal funds are low, and the subsequent impact on post-financing stock performance. Since external financing is one of the most important activities for firms and the dynamics around it are rich in many aspects, I do not believe there is one comprehensive explanation for post-financing stock underperformance. However, the evidence is strong that the moral hazard problem is one of the forces that leads to post-financing stock underperformance. This study is useful for investors to identify the types of firms prone to the moral hazard problem and long-term stock underperformance, to form a reasonable anticipation of the problem, and to reinforce monitoring efforts with these firms.

There are some extensions for future research. First, if the moral hazard problem is one source of long-term stock underperformance, we should observe cross-sectional and time-series differences of post-financing stock performance among firms with different levels of internal control efficiency. Second, the rationale of this study can be extended to some major investment projects such as mergers and acquisitions. Cross-sectional differences should exist among firms using different amounts of internal funds to finance the investment.13

This research could have implications beyond market fund raising. If the agency conflicts are most problematic for firms with scarce internal funds relative to external funds, perhaps policy-

13 Loughran and Vijh (1997) find that firms in stock mergers underperform (-61.7%) whereas firms in cash tender offers overperform (25%) in the five-year period after acquisition. Amihud, Lev, and Travlos (1990) find that larger managerial ownerships more likely lead to cash tender offers, and negative returns in stock mergers are concentrated in firms with low managerial ownership.
makers in financial crises should think more carefully about the consequences of capitalizing such firms. At the very least, controversies over issues such as executive benefits and bonuses should be clearly anticipated *ex ante* partly as a likely result of the stake changes imposed in a bailout.14

14 Within this context, the bonus case of AIG when 80\% of it is owned by the government and the lavish party thrown by Northern Trust using TARP money do not seem that surprising after all.
References

Appendix A: A Simple Illustration of Incentives Influenced by External Financing Conditioned on Internal Funds

Setup

Consider a firm with a project opportunity. The project yields a gross payoff of \(R > 0 \) if it succeeds, or 0 if it fails. This project requires a fixed investment \(I \). The firm initially has internal funds \(IF < I \). To implement the project, therefore, the firm needs to raise additional external funds \(XF = I - IF \). With funds raised, the manager can then either work or shirk. Choosing to work returns a probability of success \(p_H \). Choosing to shirk yields a probability of success \(p_L \) and the manager can gain private benefit \(B \) from the shirking, where \(B = bI, \, 0 < b < 1 \). The private benefit can be interpreted as perks, leisure, fame, bonuses, etc. I assume that

\[
\Delta p = p_H - p_L > 0. \tag{30}
\]

Thus, the model has a single period in which investment decisions are made, investment returns are realized and claims are settled. The timeline can be summarized as follows:

![Timeline Diagram](image)

Figure 1. Timeline

Assuming, for simplicity, that everyone in the economy is risk neutral and has no time preference, the discount rate, which is also the risk free return due to risk neutrality, is thus 0. The

\[15\] The model structure follows Holmström and Tirole (1997) and Tirole (2006).
expected net present value of the project, depending on the manager’s effort, is either

\[NPV_H = p_H R - I, \]

(31)

or

\[NPV_L = p_L R - I. \]

(32)

We assume the manager is also the current sole shareholder of the firm with limited liability. Hence, the manager serves a dual role as existing shareholder and manager in this simple model. This assumption will help illustrate the gist for profit sharing and is not implausible with stock options and restricted stocks so widely used in management compensation.\(^\text{16}\) The manager can raise the needed external funds \(XF\) either through a creditor or a new shareholder. For simplicity, I assume that \(NPV_H > 0\) and \(NPV_L \geq 0\) so that the manager can successfully raise the funds.

External Equity

I first consider the case where the manager raises the needed external funds by issuing equity to a new shareholder. The manager, who is also the existing shareholder, and the new shareholder hold fractions \(IF\) and \(XF\), respectively, of the total equity. These can be called “inside equity” and “outside equity” (Tirole, 2006). If the project succeeds, the manager and the new shareholder receive \(R_M\) and \(R_S\), respectively, where \(R_M + R_S = R\). If the project fails, both parties get zero. The sharing rule is proportional to the funds contributed, such that \(R_M = \frac{IF}{IF+XF} R\) and \(R_S = \frac{XF}{IF+XF} R\), where \(IF + XF = I\).

When the manager chooses whether to shirk or work, he faces a tradeoff between the private

\(^{16}\text{A similar model can be constructed with a shareholder who can have influence on management or expropriation, such as a block shareholder.}\)
benefit B and the expected decrease in his share of the profit, $\Delta p R_M$. The condition under which the manager will choose to shirk and extract private benefit from the project’s resources, and thus diminish the firm’s profit is

$$B > \Delta p R_M. \quad (33)$$

Substituting $B = bI$ and manager’s share of the revenue $R_M = \frac{IF}{T} R$ into condition (33) and rearranging yields the following threshold, T_E, for internal funds level relative to total investment in the case when the external fund comes from outside equity. If the ratio $\frac{IF}{T}$ is below T_E the manager will shirk since the private benefit B outweighs change in success probability of the project:

$$\frac{IF}{T} < T_E = \frac{bI}{\Delta p R M}. \quad (34)$$

Fixing I, the composition of T_E illustrates that more internal funds are needed to avoid the agency conflicts when the manager is able to extract more private benefit (bI). On the other hand, less internal funds are needed to avoid the agency conflicts when the marginal productivity $\Delta p R$ is higher since the potential high loss in revenue keeps the shirking behavior at bay. But if the internal funds are too scarce such that the manager’s stake in the total revenue is small enough, he will not care about the loss in revenue compared to the private benefit, and the incentive to shirk will arise.

External Debt

Consider now the case when the manager raises the needed external funds by borrowing from a creditor. If the project succeeds, the payoff R is shared by the manager and the creditor as R_M.
and R_c, where $R_m + R_c = R$. If the project fails, both parties get 0. The lending market is competitive such that $p_H R_c = X F$, which is the binding individual rationality constraint for the creditor (IR_C) to lend money. Thus, I have:

$$R_m = R - R_c = R - \frac{XF}{p_H} = R - \frac{(I - IF)}{p_H}.$$ \hfill (35)

Again, the manager faces a tradeoff between the private benefit B and the expected decrease in payoff, $\Delta p R_m$. The condition under which the manager will shirk and extract private benefit from the project’s resources is the same as in (33). Substituting (35) into the inequality (33) above and rearranging gives the following threshold level, T_D, in the case when the external funds come from outside debt. If ratio $\frac{IF}{I}$ is below T_D, the manager will shirk since the private benefit B outweighs the higher probability of success of the project:

$$\frac{IF}{I} < T_D = \frac{p_H b}{\Delta p} \frac{NPV_H}{I}.$$ \hfill (36)

The composition of T_D illustrates that more internal funds are needed to avoid the agency conflict when the likelihood ratio $\Delta p / p_H$ is lower, when the manager is able to extract more private benefit b, when the value of the project conditional on working, NPV_H, is lower, or when the total investment is higher.\footnote{The likelihood ratio is often defined as p_H / p_L. It is equivalent to use $\Delta p / p_H$. The likelihood ratio measures the informativeness of the performance variable. Here, it is equally a measure of the marginal productivity of effort by the manager. When the likelihood ratio is lower, the change of productivity from shirking to working is smaller. The tradeoff with B, the decrease in the manager’s share of the profit, is determined by the change of productivity and his share. The smaller change of productivity from shirking to working, the higher his share and thus IF is needed in place to prevent shirking.}

\vspace{1em}
Comparison of T_E and T_D

T_E and T_D can be compared as follows:

$$T_E - T_D = \frac{NPV_H}{I}(1 - \frac{B}{\Delta pR}).$$

(37)

Since I assume $NPV_H > 0$, I will have $T_E \leq T_D$ when $B \geq \Delta pR$, and I will have $T_E > T_D$ when $B < \Delta pR$. A lower threshold means the manager is less likely to have incentive to shirk when the same amount of external funds is raised.

$B < \Delta pR$ is the condition for $T_E > T_D$. When B and Δp are fixed, the higher the value of R, the more likely ΔpR is smaller than B, and the more likely T_E is higher than T_D. The economic intuition is that with the increase of the total R, the revenue for outside shareholders increases in lockstep, but the revenue for creditors remains constant. Hence, when the funds are raised through debt, inside shareholders see a faster increase in revenue, and the incentive to shirk is less.

$B \geq \Delta pR$ is the condition for $T_E \leq T_D$, but it is actually trivial. Because when $\Delta pR \leq B$, we will have $\Delta pRm < \Delta pR \leq B$, and the tradeoff the manager faces in (33) favors private benefit extraction no matter whether the funds are raised through equity or debt. The mathematical constraint is that in (34), when $\Delta pR < B$, $\frac{B}{\Delta pR}$ is bigger than 1, while by definition $\frac{IE}{F}$ is smaller than 1, such that (34) always holds although $T_E \leq T_D$. Hence, it is trivial to compare T_E and T_D when $\Delta pR < B$. The economic intuition is that whenever $NPV_H > 0$, the incentive to shirk is always higher when the external funds are raised through equity instead of debt, if not equal. With debt issues, the current shareholders retain all the economic rent, the profit above the market interest rate, while with equity issues, the current shareholder needs to share this profit.
Appendix B: Variable Definitions

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firm characteristics</td>
<td></td>
</tr>
<tr>
<td>Total Assets</td>
<td>Item 60.</td>
</tr>
<tr>
<td>Size</td>
<td>Market value of equity, defined as stock price multiplied by shares outstanding at the end of fiscal year 0.</td>
</tr>
<tr>
<td>LgSize</td>
<td>Natural log of Size.</td>
</tr>
<tr>
<td>B/M</td>
<td>Book-to-market ratio, defined as the book equity (item 216 + item 74 + item 208 - item 56) divided by market equity at the end of fiscal year 0.</td>
</tr>
</tbody>
</table>

External financing activity, internal funds, and accruals (scaled by the total assets at the beginning of year 0, the year when external financing activities are measured)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>X F</td>
<td>Net external financing, summation of ΔE and ΔD.</td>
</tr>
<tr>
<td>ΔE</td>
<td>Net equity financing activities, measured as the proceeds from the sale of common and preferred stock (item 108) less cash payments for the purchase of common and preferred stock (item 115) less cash payments for dividends (item 127).</td>
</tr>
<tr>
<td>ΔD</td>
<td>Net debt financing, measured as the cash proceeds from the issuance of long-term debt (item 111) less cash payments for long-term debt reductions (item 114) less the net changes in current debt (item 301).</td>
</tr>
<tr>
<td>CFO$_{-1}$</td>
<td>Cash flow from operations (Compustat item 308) from year -1, as a measurement for internal funds.</td>
</tr>
<tr>
<td>EQ$_{-1}$</td>
<td>Book value of common equity (Compustat item 60) at the beginning of year 0, as a measurement for internal funds.</td>
</tr>
<tr>
<td>Cash$_{-1}$</td>
<td>Cash and short-term investment (Compustat item 1) at the beginning of year 0, as a measurement for internal funds.</td>
</tr>
<tr>
<td>IFR$_L$</td>
<td>A dummy variable equal to one if the internal funds ratio, the ratio of internal funds from year -1 to external funds raised in year 0, is higher than or equal to the median internal funds ratio in year 0 of the sample and zero otherwise.</td>
</tr>
<tr>
<td>IFR$_H$</td>
<td>A dummy variable equal to one if the internal funds ratio, the ratio of internal funds from year -1 to external funds raised in year 0, is lower than or equal to the median internal funds ratio in year 0 of the sample and zero otherwise.</td>
</tr>
<tr>
<td>ACCR$_0$</td>
<td>Accruals of year 0, measured as earnings before extraordinary items from the statement of cash flows (item 123) less cash flows from operations (item 308).</td>
</tr>
<tr>
<td>DCAC$_{-1}$</td>
<td>Discretionary current accruals of year -1.</td>
</tr>
<tr>
<td>DLAC$_{-1}$</td>
<td>Discretionary long-term accruals of year -1.</td>
</tr>
</tbody>
</table>

Buy-and-hold abnormal returns

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHAR</td>
<td>Buy-and-hold abnormal returns, defined as buy-and-hold returns minus buy-and-hold benchmark portfolio value-weighted returns.</td>
</tr>
<tr>
<td>BHARE</td>
<td>Buy-and-hold abnormal returns during earnings announcement periods.</td>
</tr>
<tr>
<td>BHARNE</td>
<td>Buy-and-hold abnormal returns during non-earnings announcement periods.</td>
</tr>
</tbody>
</table>
Expense changes

ΔExp Average annual change of total expenses (item 12-item 172), over 3 years after year 0.

$\Delta SGAE$ Average annual change of selling, general, and administrative expenses (item 189), over 3 years after year 0.

$\Delta Sales$ Average annual change of sales (item 112), over 3 years after year 0.

$\Delta R&D$ Average annual change of research and development expense (item 46), over 3 years after year 0.

Analyst data (scaled by stock price of the forecasting month)

FE Mean consensus analyst forecast error, measured as actual earnings less forecasted earnings.

$FSTD$ Standard deviation of FE.

$FNUM$ Number of analysts following the firm.

$LgFNUM$ Natural log of $FNUM$.

Accounting data are from the Compustat annual files. Earnings announcement dates are from the Compustat quarterly files. Return measurements and market value are from the CRSP monthly returns. Analyst data are from the I/B/E/S summary files.
Figure 2. Flowchart of Empirical Results

- High Internal Funds, No Moral Hazard
 - Normal Information Environment
 - Normal Expense Decrease from Economies of Scale

- New Issues

- Low Internal Funds, Moral Hazard
 - Weaker Information Environment
 - More Optimistic Forecast Error
 - Larger Opinion Dispersion
 - Less Analyst Coverage
 - Less SGAE Decrease from Economies of Scale

- Stock Normal Performance in (non-) Earnings Announcement Periods
- Stock Underperformance

- No Information Update
- More Intense Stock Underperformance in Earnings Announcement Periods
- Stock Normal Performance
Figure 3. Timeline for Variable Measurement

-2 -1 0 3 months 1 2 3 Year

\(\Delta E, \Delta D, X_F \)

\(\text{CFO}_{-1}, \text{EQ}_{-1}, \text{Cash}_{-1} \)

\(\text{Exp}_0 \)

\(\text{Exp}_1 \)

\(\text{Exp}_2 \)

\(\text{Exp}_3 \)

\(\text{FE}_1 \)

\(\text{FE}_2 \)

\(\text{FE}_3 \)

\(\text{BHAR} \)
Figure 4A Cumulative size-adjusted stock returns for extreme external financing deciles from Bradshaw, Richardson, and Sloan (2006)

Figure 4B Buy-and-hold abnormal returns for top issuer portfolios from the IFRH group and the IFRL group over the 10-year window centered on the external financing measurement year*

* The IFRH group has a high ratio of internal funds to external funds.
 The IFRL group has a low ratio of internal funds to external funds.
Figure 5. Buy-and-hold abnormal returns for comparable issuer portfolios from the IFRH group and the IFRL over the 10-year window centered on the external financing measurement year.

* The IFRH group has a high ratio of internal funds to external funds.

The IFRL group has a low ratio of internal funds to external funds.
The sample consists of 13,799 firm-years from 1988 to 2005. Variable definitions are given in Appendix B.

Panel A: Univariate statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std.</th>
<th>Q1</th>
<th>Median</th>
<th>Q3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (in $ mil.)</td>
<td>585.639</td>
<td>2518.780</td>
<td>28.486</td>
<td>92.114</td>
<td>352.061</td>
</tr>
<tr>
<td>B/M</td>
<td>0.611</td>
<td>0.652</td>
<td>0.239</td>
<td>0.436</td>
<td>0.768</td>
</tr>
<tr>
<td>XF</td>
<td>0.260</td>
<td>0.503</td>
<td>0.025</td>
<td>0.086</td>
<td>0.262</td>
</tr>
<tr>
<td>ΔE</td>
<td>0.134</td>
<td>0.406</td>
<td>0.001</td>
<td>0.010</td>
<td>0.056</td>
</tr>
<tr>
<td>ΔD</td>
<td>0.126</td>
<td>0.262</td>
<td>0.000</td>
<td>0.039</td>
<td>0.134</td>
</tr>
<tr>
<td>ΔExp</td>
<td>-0.124</td>
<td>0.600</td>
<td>-0.296</td>
<td>-0.051</td>
<td>0.113</td>
</tr>
<tr>
<td>$\Delta SGAE$</td>
<td>-0.037</td>
<td>0.203</td>
<td>-0.085</td>
<td>-0.015</td>
<td>0.027</td>
</tr>
<tr>
<td>$BHAR$</td>
<td>-0.049</td>
<td>1.586</td>
<td>-0.841</td>
<td>-0.341</td>
<td>0.297</td>
</tr>
</tbody>
</table>

Panel B: Pair-wise correlations

<table>
<thead>
<tr>
<th>Variable</th>
<th>Size</th>
<th>B/M</th>
<th>XF</th>
<th>ΔE</th>
<th>ΔD</th>
<th>ΔExp</th>
<th>$\Delta SGAE$</th>
<th>$BHAR$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Size$</td>
<td>-0.102</td>
<td>0.004</td>
<td>0.003</td>
<td>0.003</td>
<td>-0.039</td>
<td>-0.042</td>
<td>0.017</td>
<td></td>
</tr>
<tr>
<td>B/M</td>
<td>-0.347</td>
<td>-0.188</td>
<td>-0.178</td>
<td>-0.085</td>
<td>0.108</td>
<td>0.116</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>XF</td>
<td>0.059</td>
<td>-0.295</td>
<td>-0.855</td>
<td>0.595</td>
<td>-0.357</td>
<td>-0.450</td>
<td>-0.045</td>
<td></td>
</tr>
<tr>
<td>ΔE</td>
<td>0.268</td>
<td>-0.473</td>
<td>0.474</td>
<td>-0.092</td>
<td>-0.244</td>
<td>-0.381</td>
<td>-0.030</td>
<td></td>
</tr>
<tr>
<td>ΔD</td>
<td>-0.052</td>
<td>0.046</td>
<td>0.643</td>
<td>-0.136</td>
<td>-</td>
<td>-0.311</td>
<td>-0.275</td>
<td>-0.039</td>
</tr>
<tr>
<td>ΔExp</td>
<td>-0.136</td>
<td>0.159</td>
<td>-0.383</td>
<td>-0.178</td>
<td>-0.291</td>
<td>-</td>
<td>0.718</td>
<td>0.118</td>
</tr>
<tr>
<td>$\Delta SGAE$</td>
<td>-0.112</td>
<td>0.184</td>
<td>-0.396</td>
<td>-0.216</td>
<td>-0.259</td>
<td>0.788</td>
<td>-</td>
<td>0.077</td>
</tr>
<tr>
<td>$BHAR$</td>
<td>0.122</td>
<td>-0.047</td>
<td>-0.074</td>
<td>0.008</td>
<td>-0.071</td>
<td>0.125</td>
<td>0.082</td>
<td>-</td>
</tr>
</tbody>
</table>

All correlations greater than 0.02 in absolute magnitude are significant at the 0.01 level.
Table 2
Post-Financing Abnormal Performance with Separate Groups

I rank all firms each year into two groups by internal funds ratio level \(IFR_{CFO} \), defined in (4) as the ratio of internal funds to net external financing in year 0. I refer to the group with a ratio higher than or equal to the median ratio as the \(IFR_H \) group, and the group with a ratio lower than the median ratio as the \(IFR_L \) group. I fit the following cross-sectional regressions to all firms each year,

\[
BHAR = \alpha_0 + \alpha_1XF + \alpha_2CFO_0 + \alpha_3ACCR_0 + \alpha_4DCAC_{-1} + \alpha_5DLAC_{-1} + Industry\ Dummies + \nu_n,
\]

\[
BHAR = \alpha_0 + \alpha_1\Delta E + \alpha_2\Delta D + \alpha_3CFO_0 + \alpha_4ACCR_0 + \alpha_5DCAC_{-1} + \alpha_6DLAC_{-1} + Industry \ Dummies + \nu_n.
\]

where \(BHAR \) is the post-financing abnormal stock performance, \(XF \) is net equity financing, \(\Delta E \) is net equity financing, and \(\Delta D \) is net debt financing. Additional variable definitions are given in Appendix B. Fama-French industry dummies are used to control for industry effect and the associated coefficients are omitted in the table. Reported coefficients are means of the time-series coefficients from annual regressions following the Fama and MacBeth (1973) procedure. The associated t-statistics (reported in parentheses below coefficient estimates) are based on the standard error of the annual coefficient estimates adjusted by the Newey-West procedure (Newey and West, 1987). ***, **, and * denote significance at the 1%, 5% and 10% level, two-tail.

Panel A: Net external financing

<table>
<thead>
<tr>
<th>Sample</th>
<th>Intercept</th>
<th>(XF)</th>
<th>(CFO_0)</th>
<th>(ACCR_0)</th>
<th>(DCAC_{-1})</th>
<th>(DLAC_{-1})</th>
<th>Adj. (R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole</td>
<td>0.051</td>
<td>-0.189***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.021</td>
</tr>
<tr>
<td>Sample</td>
<td>(1.21)</td>
<td>(-10.61)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole</td>
<td>0.057</td>
<td>-0.138***</td>
<td>0.252***</td>
<td>0.090</td>
<td>-0.159*</td>
<td>-0.131</td>
<td>0.026</td>
</tr>
<tr>
<td>Sample</td>
<td>(1.46)</td>
<td>(-6.49)</td>
<td>(4.55)</td>
<td>(0.79)</td>
<td>(-1.92)</td>
<td>(-1.64)</td>
<td></td>
</tr>
<tr>
<td>(IFR_L)</td>
<td>0.022</td>
<td>-0.127***</td>
<td>0.222***</td>
<td>0.109</td>
<td>-0.027</td>
<td>-0.021</td>
<td>0.030</td>
</tr>
<tr>
<td></td>
<td>(0.77)</td>
<td>(-3.86)</td>
<td>(4.03)</td>
<td>(0.74)</td>
<td>(-0.24)</td>
<td>(-0.46)</td>
<td></td>
</tr>
<tr>
<td>(IFR_H)</td>
<td>0.064</td>
<td>-0.020</td>
<td>0.324</td>
<td>0.304</td>
<td>-0.409*</td>
<td>-0.327</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td>(1.22)</td>
<td>(-0.93)</td>
<td>(1.09)</td>
<td>(0.98)</td>
<td>(-1.81)</td>
<td>(-1.58)</td>
<td></td>
</tr>
</tbody>
</table>

Panel B: Equity and debt components of net external financing

<table>
<thead>
<tr>
<th>Sample</th>
<th>Intercept</th>
<th>(\Delta E)</th>
<th>(\Delta D)</th>
<th>(CFO_0)</th>
<th>(ACCR_0)</th>
<th>(DCAC_{-1})</th>
<th>(DLAC_{-1})</th>
<th>Adj. (R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole</td>
<td>0.054</td>
<td>-0.152***</td>
<td>-0.264***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.022</td>
</tr>
<tr>
<td>Sample</td>
<td>(1.27)</td>
<td>(-5.09)</td>
<td>(-6.64)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole</td>
<td>0.061</td>
<td>-0.087***</td>
<td>-0.232***</td>
<td>0.274***</td>
<td>0.102</td>
<td>-0.161*</td>
<td>-0.127</td>
<td>0.027</td>
</tr>
<tr>
<td>Sample</td>
<td>(1.54)</td>
<td>(-4.06)</td>
<td>(-5.08)</td>
<td>(4.76)</td>
<td>(0.88)</td>
<td>(-1.93)</td>
<td>(-1.59)</td>
<td></td>
</tr>
<tr>
<td>(IFR_L)</td>
<td>0.028</td>
<td>-0.085***</td>
<td>-0.155**</td>
<td>0.247***</td>
<td>0.121</td>
<td>-0.040</td>
<td>-0.020</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>(0.89)</td>
<td>(-3.17)</td>
<td>(-2.64)</td>
<td>(4.16)</td>
<td>(0.79)</td>
<td>(-0.34)</td>
<td>(-0.44)</td>
<td></td>
</tr>
<tr>
<td>(IFR_H)</td>
<td>0.074</td>
<td>-0.031</td>
<td>-0.070</td>
<td>0.266**</td>
<td>0.327</td>
<td>-0.491*</td>
<td>-0.383</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td>(1.35)</td>
<td>(-0.34)</td>
<td>(-1.09)</td>
<td>(2.15)</td>
<td>(0.99)</td>
<td>(-1.77)</td>
<td>(-1.50)</td>
<td></td>
</tr>
</tbody>
</table>
Table 3
Post-Financing Abnormal Performance with Nested Groups

I rank all firms each year into two groups by internal funds ratio level IFR_{CFO}, IFR_{EQ}, or IFR_{Cash}, defined in (4), (5), or (6), as the ratio of internal funds to net external financing in year 0. I refer to the group with a ratio higher than or equal to the median ratio as the IFR_H group, and the group with a ratio lower than the median ratio as the IFR_L group. I fit the following cross-sectional regressions to all firms each year:

$$BHAR = \alpha_0 + \alpha_1 IFR_L X F + \alpha_{1,H} IFR_H X F + \alpha_2 CFO_0 + \alpha_3 ACCR_0 + \alpha_4 DCAC_{-1} + \alpha_5 DLAC_{-1}$$

+ Industry Dummies + ν_n,

$$BHAR = \alpha_0 + \alpha_1 IFR_L \Delta E + \alpha_{1,H} IFR_H \Delta E + \alpha_2 CFO_0 + \alpha_3 ACCR_0 + \alpha_4 DCAC_{-1} + \alpha_5 DLAC_{-1} + Industry \ Dummies + \nu_n.$$

where $BHAR$ is the post-financing abnormal stock performance, XF is net equity financing, ΔE is net equity financing, ΔD is net debt financing, $IFR_L = 1$ if a firm is in the IFR_L group and zero otherwise, and $IFR_H = 1$ if a firm is in the IFR_H group and zero otherwise. Additional variable definitions are given in Appendix B. Fama-French industry dummies are used to control for industry effect and the associated coefficients are omitted in the table. Reported coefficients are means of the time-series coefficients from annual regressions following the Fama and MacBeth (1973) procedure. The associated t-statistics (reported in parentheses below coefficient estimates) are based on the standard error of the annual coefficient estimates adjusted by the Newey-West procedure (Newey and West, 1987). ***, **, and * denote significance at the 1%, 5% and 10% level, two-tail.

Panel A: Net external financing

<table>
<thead>
<tr>
<th>Group Dividing Var.</th>
<th>Intercept</th>
<th>$IFR_L X F$</th>
<th>$IFR_H X F$</th>
<th>CFO_0</th>
<th>$ACCR_0$</th>
<th>$DCAC_{-1}$</th>
<th>$DLAC_{-1}$</th>
<th>Adj. R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFR_{CFO}</td>
<td>0.057</td>
<td>-0.145***</td>
<td>-0.010</td>
<td>0.242***</td>
<td>0.085</td>
<td>-0.148</td>
<td>-0.129</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td>(1.32)</td>
<td>(-8.18)</td>
<td>(-0.06)</td>
<td>(3.86)</td>
<td>(0.75)</td>
<td>(-1.61)</td>
<td>(-1.63)</td>
<td></td>
</tr>
<tr>
<td>IFR_{EQ}</td>
<td>0.047</td>
<td>-0.131***</td>
<td>0.322</td>
<td>0.252***</td>
<td>0.090</td>
<td>-0.182***</td>
<td>-0.147*</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td>(1.42)</td>
<td>(-6.06)</td>
<td>(0.86)</td>
<td>(4.56)</td>
<td>(0.78)</td>
<td>(-2.11)</td>
<td>(-1.77)</td>
<td></td>
</tr>
<tr>
<td>IFR_{Cash}</td>
<td>0.051</td>
<td>-0.146***</td>
<td>-0.003</td>
<td>0.253***</td>
<td>0.094</td>
<td>-0.156*</td>
<td>-0.130</td>
<td>0.026</td>
</tr>
<tr>
<td></td>
<td>(1.39)</td>
<td>(-5.95)</td>
<td>(-0.03)</td>
<td>(4.67)</td>
<td>(0.82)</td>
<td>(-1.87)</td>
<td>(-1.63)</td>
<td></td>
</tr>
</tbody>
</table>

Panel B: Debt and equity components of net external financing

<table>
<thead>
<tr>
<th>Group Dividing Var.</th>
<th>Intercept</th>
<th>$IFR_L \Delta E$</th>
<th>$IFR_L \Delta D$</th>
<th>$IFR_H \Delta E$</th>
<th>$IFR_H \Delta D$</th>
<th>CFO_0</th>
<th>$ACCR_0$</th>
<th>$DCAC_{-1}$</th>
<th>$DLAC_{-1}$</th>
<th>Adj. R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFR_{CFO}</td>
<td>0.063</td>
<td>-0.121***</td>
<td>-0.218***</td>
<td>0.050</td>
<td>-0.042</td>
<td>0.253***</td>
<td>0.108</td>
<td>-0.161*</td>
<td>-0.130</td>
<td>0.026</td>
</tr>
<tr>
<td></td>
<td>(1.48)</td>
<td>(-5.79)</td>
<td>(-4.29)</td>
<td>(0.30)</td>
<td>(-0.57)</td>
<td>(3.90)</td>
<td>(0.91)</td>
<td>(-1.94)</td>
<td>(-1.62)</td>
<td></td>
</tr>
<tr>
<td>IFR_{EQ}</td>
<td>0.052</td>
<td>-0.083***</td>
<td>-0.212***</td>
<td>0.290</td>
<td>0.249</td>
<td>0.278***</td>
<td>0.108</td>
<td>-0.180*</td>
<td>-0.142</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>(1.50)</td>
<td>(-3.40)</td>
<td>(-5.14)</td>
<td>(1.41)</td>
<td>(0.49)</td>
<td>(5.00)</td>
<td>(0.92)</td>
<td>(-2.04)</td>
<td>(-1.68)</td>
<td></td>
</tr>
<tr>
<td>IFR_{Cash}</td>
<td>0.059</td>
<td>-0.091***</td>
<td>-0.238***</td>
<td>0.009</td>
<td>0.290***</td>
<td>0.107</td>
<td>-0.157*</td>
<td>-0.133</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.53)</td>
<td>(-4.05)</td>
<td>(-4.89)</td>
<td>(-0.96)</td>
<td>(4.82)</td>
<td>(0.92)</td>
<td>(-1.84)</td>
<td>(-1.62)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4

Expense Changes Subsequent to External Financing

I rank all firms each year into two groups by internal funds ratio level IFR_{CFO}, defined in (4), as the ratio of internal funds to net external financing in year 0. I refer to the group with a ratio higher than or equal to the median ratio as the IFR_H group, and the group with a ratio lower than the median ratio as the IFR_L group. I fit the following cross-sectional regressions to all firms each year,

$$Expense \ Changes = \alpha_0 + \alpha_{1,L}IFR_LXF + \alpha_{1,H}IFR_HXF + \Delta Sales + \Delta R&D + Industry \ Dummies + \nu_n,$$

$$Expense \ Changes = \alpha_0 + \alpha_{1,L}IFR_L\Delta E + \alpha_{2,L}IFR_L\Delta D + \alpha_{1,H}IFR_H\Delta E + \alpha_{2,H}IFR_H\Delta D$$

$$+ \Delta Sales + \Delta R&D + Industry \ Dummies + \nu_n.$$

Expense Changes is $\Delta SGAE$ or ΔExp. XF is net equity financing, ΔE is net equity financing, ΔD is net debt financing, $IFR_L = 1$ if a firm is in the IFR_L group and zero otherwise, and $IFR_H = 1$ if a firm is in the IFR_H group and zero otherwise. Additional variable definitions are given in Appendix B. Fama-French industry dummies are used to control for industry effect and the associated coefficients are omitted in the table. Reported coefficients are means of the time-series coefficients from annual regressions following the Fama and MacBeth (1973) procedure. The associated t-statistics (reported in parentheses below coefficient estimates) are based on the standard error of the annual coefficient estimates adjusted by the Newey-West procedure (Newey and West, 1987). F statistics are provided in the last column(s) to compare the coefficients on the corresponding external financing measure interacting with the dummies for high and IFR_H groups. ***, **, and * denote significance at the 1%, 5% and 10% level, two-tail.

Panel A: Net external financing

<table>
<thead>
<tr>
<th>Dep. Var.</th>
<th>Intercept</th>
<th>IFR_LXF</th>
<th>IFR_HXF</th>
<th>$\Delta Sales$</th>
<th>$\Delta R&D$</th>
<th>Adj. R^2</th>
<th>F (ΔXF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta SGAE$</td>
<td>0.011*</td>
<td>-0.085***</td>
<td>-0.105***</td>
<td>0.171***</td>
<td>0.928***</td>
<td>0.591</td>
<td>10.354***</td>
</tr>
<tr>
<td>(1.92)</td>
<td>(-15.67)</td>
<td>(-6.47)</td>
<td>(41.46)</td>
<td>(8.92)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔExp</td>
<td>0.023*</td>
<td>-0.073**</td>
<td>0.002</td>
<td>0.862***</td>
<td>0.995***</td>
<td>0.705</td>
<td>18.209***</td>
</tr>
<tr>
<td>(1.82)</td>
<td>(-2.17)</td>
<td>(0.61)</td>
<td>(74.66)</td>
<td>(6.08)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel B: Debt and equity components of net external financing

<table>
<thead>
<tr>
<th>Dep. Var.</th>
<th>Intercept</th>
<th>$IFR_L\Delta E$</th>
<th>$IFR_L\Delta D$</th>
<th>$IFR_H\Delta E$</th>
<th>$IFR_H\Delta D$</th>
<th>$\Delta Sales$</th>
<th>$\Delta R&D$</th>
<th>Adj. R^2</th>
<th>F (ΔE)</th>
<th>F (ΔD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta SGAE$</td>
<td>0.010*</td>
<td>-0.089***</td>
<td>-0.073***</td>
<td>-0.116***</td>
<td>-0.092***</td>
<td>0.173***</td>
<td>0.921***</td>
<td>0.593</td>
<td>8.032***</td>
<td>5.875**</td>
</tr>
<tr>
<td>(1.76)</td>
<td>(-11.19)</td>
<td>(-7.77)</td>
<td>(-6.49)</td>
<td>(-4.92)</td>
<td>(35.21)</td>
<td>(8.98)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔExp</td>
<td>0.025</td>
<td>-0.063***</td>
<td>-0.092***</td>
<td>0.015</td>
<td>-0.096***</td>
<td>0.856***</td>
<td>0.939***</td>
<td>0.772</td>
<td>26.587***</td>
<td>0.226</td>
</tr>
<tr>
<td>(1.68)</td>
<td>(-5.06)</td>
<td>(-7.05)</td>
<td>(0.44)</td>
<td>(-4.25)</td>
<td>(62.44)</td>
<td>(9.12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5

External Financing and Earnings Period Abnormal Performance

I rank all firms each year into two groups by internal funds ratio level IFR_{CFO}, defined in (4), as the ratio of internal funds to net external financing in year 0. I refer to the group with a ratio higher than or equal to the median ratio as the IFR_{H} group, and the group with a ratio lower than the median ratio as the IFR_{L} group. I fit the following cross-sectional regressions to all firms each year,

$$BHARE = \alpha_0 + \alpha_{1,L} IFR_{L} XF + \alpha_{1,H} IFR_{H} XF + \alpha_2 CFO_0 + \alpha_3 ACCR_0 + \alpha_4 DCAC_{-1} + \alpha_5 DLAC_{-1} + \text{Industry Dummies} + \nu_n,$$

$$BHARNE = \alpha_0 + \alpha_{1,L} IFR_{L} XF + \alpha_{1,H} IFR_{H} XF + \alpha_2 CFO_0 + \alpha_3 ACCR_0 + \alpha_4 DCAC_{-1} + \alpha_5 DLAC_{-1} + \text{Industry Dummies} + \nu_n,$$

$$BHARE = \alpha_0 + \alpha_{1,L} IFR_{L} \Delta E + \alpha_{2,L} IFR_{H} \Delta D + \alpha_{1,H} IFR_{H} \Delta E + \alpha_{2,H} IFR_{L} \Delta D$$

$$ + \alpha_3 CFO_0 + \alpha_4 ACCR_0 + \alpha_5 DCAC_{-1} + \alpha_6 DLAC_{-1} + \text{Industry Dummies} + \nu_n,$$

$$BHARNE = \alpha_0 + \alpha_{1,L} IFR_{L} \Delta E + \alpha_{2,L} IFR_{H} \Delta D + \alpha_{1,H} IFR_{H} \Delta E + \alpha_{2,H} IFR_{L} \Delta D$$

$$ + \alpha_3 CFO_0 + \alpha_4 ACCR_0 + \alpha_5 DCAC_{-1} + \alpha_6 DLAC_{-1} + \text{Industry Dummies} + \nu_n,$$

where $BHARE$ is the post-financing abnormal stock performance during earnings announcement periods, $BHARNE$ is the post-financing abnormal stock performance during non-earnings announcement periods, XF is net equity financing, ΔE is net equity financing, ΔD is net debt financing, $IFR_{L} = 1$ if a firm is in the IFR_{L} group and zero otherwise, and $IFR_{H} = 1$ if a firm is in the IFR_{H} group and zero otherwise. Additional variable definitions are given in Appendix B. Fama-French industry dummies are used to control for industry effect and the associated coefficients are omitted in the table. Reported coefficients are means of the time-series coefficients from annual regressions following the Fama and MacBeth (1973) procedure. The associated t-statistics (reported in parentheses below coefficient estimates) are based on the standard error of the annual coefficient estimates adjusted by the Newey-West procedure (Newey and West, 1987). ***, **, and * denote significance at the 1%, 5% and 10% level, two-tail.

Panel A: Net external financing

<table>
<thead>
<tr>
<th>Dep. Var.</th>
<th>Intercept</th>
<th>$IFR_{L} XF$</th>
<th>$IFR_{H} XF$</th>
<th>CFO_0</th>
<th>ACCR_0</th>
<th>DCAC_{-1}</th>
<th>DLAC_{-1}</th>
<th>Adj. R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>$BHARE$</td>
<td>0.035***</td>
<td>-0.024***</td>
<td>-0.018</td>
<td>0.086***</td>
<td>-0.020</td>
<td>-0.005</td>
<td>0.012</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>(5.06)</td>
<td>(-4.45)</td>
<td>(-0.28)</td>
<td>(4.48)</td>
<td>(-0.57)</td>
<td>(-0.42)</td>
<td>(1.26)</td>
<td></td>
</tr>
<tr>
<td>$BHARNE$</td>
<td>0.018</td>
<td>-0.116***</td>
<td>-0.041</td>
<td>0.079**</td>
<td>-0.006</td>
<td>-0.149*</td>
<td>-0.158***</td>
<td>0.030</td>
</tr>
<tr>
<td></td>
<td>(0.55)</td>
<td>(-6.54)</td>
<td>(-0.31)</td>
<td>(2.09)</td>
<td>(-0.06)</td>
<td>(-1.85)</td>
<td>(-3.12)</td>
<td></td>
</tr>
</tbody>
</table>

Panel B: Debt and equity components of net external financing

<table>
<thead>
<tr>
<th>Dep. Var.</th>
<th>Intercept</th>
<th>$IFR_{L} \Delta E$</th>
<th>$IFR_{L} \Delta D$</th>
<th>$IFR_{H} \Delta E$</th>
<th>$IFR_{H} \Delta D$</th>
<th>CFO_0</th>
<th>ACCR_0</th>
<th>DCAC_{-1}</th>
<th>DLAC_{-1}</th>
<th>Adj. R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>$BHARE$</td>
<td>0.035***</td>
<td>-0.030***</td>
<td>-0.024*</td>
<td>-0.001</td>
<td>0.015</td>
<td>0.016</td>
<td>0.081***</td>
<td>-0.022</td>
<td>-0.005</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>(5.21)</td>
<td>(-5.72)</td>
<td>(-1.92)</td>
<td>(-0.66)</td>
<td>(0.33)</td>
<td>(4.23)</td>
<td>(0.60)</td>
<td>(-0.40)</td>
<td>(1.26)</td>
<td></td>
</tr>
<tr>
<td>$BHARNE$</td>
<td>0.024</td>
<td>-0.076***</td>
<td>-0.191***</td>
<td>0.061</td>
<td>-0.192</td>
<td>0.099***</td>
<td>0.013</td>
<td>-0.162*</td>
<td>-0.156***</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>(0.75)</td>
<td>(-4.19)</td>
<td>(-3.71)</td>
<td>(0.45)</td>
<td>(-0.88)</td>
<td>(2.22)</td>
<td>(0.14)</td>
<td>(-1.87)</td>
<td>(-3.07)</td>
<td></td>
</tr>
</tbody>
</table>
Table 6
External Financing and Analyst forecasts

I rank all firms each year into two groups by internal funds ratio level IFR_{CFO}, defined in (4), as the ratio of internal funds to net external financing in year 0. I refer to the group with a ratio higher than or equal to the median ratio as the IFR_L group, and the group with a ratio lower than the median ratio as the IFR_H group. I fit the following cross-sectional regressions to all firms each year,

$$\text{Analyst Measurement} = \alpha_0 + \alpha_{1,L}IFR_LXF + \alpha_{1,H}IFR_HXF + \text{LgSize} + \text{BM} + \text{Industry Dummies} + \nu_n,$$

$$\text{Analyst Measurement} = \alpha_0 + \alpha_{1,L}IFR_L\Delta E + \alpha_{1,H}IFR_H\Delta D + \alpha_{2,L}IFR_L\Delta E + \alpha_{2,H}IFR_H\Delta D + \text{LgSize} + \text{BM} + \text{Industry Dummies} + \nu_n,$$

where $\text{Analyst Measurement}$ is FE, $FSTD$, or $LgFNUM$, XF is net equity financing, ΔE is net equity financing, ΔD is net debt financing, $IFR_L = 1$ if a firm is in the IFR_L group and zero otherwise, and $IFR_H = 1$ if a firm is in the IFR_H group and zero otherwise. Additional variable definitions are given in Appendix B. Fama-French industry dummies are used to control for industry effect and the associated coefficients are omitted in the table. Reported coefficients are means of the time-series coefficients from annual regressions following the Fama and MacBeth (1973) procedure. The associated t-statistics (reported in parentheses below coefficient estimates) are based on the standard error of the annual coefficient estimates adjusted by the Newey-West procedure (Newey and West, 1987). ***, **, and * denote significance at the 1%, 5% and 10% level, two-tail.

Panel A: Net external financing

<table>
<thead>
<tr>
<th>Dep. Var.</th>
<th>Intercept</th>
<th>IFR_LXF</th>
<th>IFR_HXF</th>
<th>LgSize</th>
<th>B/M</th>
<th>Adj. R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>FE</td>
<td>-0.109***</td>
<td>-0.042***</td>
<td>-0.028</td>
<td>0.016***</td>
<td>-0.027**</td>
<td>0.053</td>
</tr>
<tr>
<td></td>
<td>(-5.69)</td>
<td>(-3.81)</td>
<td>(-1.52)</td>
<td>(5.78)</td>
<td>(-2.67)</td>
<td></td>
</tr>
<tr>
<td>$FSTD$</td>
<td>0.025***</td>
<td>0.006**</td>
<td>0.003</td>
<td>-0.022***</td>
<td>0.002</td>
<td>0.039</td>
</tr>
<tr>
<td></td>
<td>(5.26)</td>
<td>(2.55)</td>
<td>(0.65)</td>
<td>(-4.44)</td>
<td>(1.07)</td>
<td></td>
</tr>
<tr>
<td>$LgFNUM$</td>
<td>-0.080***</td>
<td>0.083</td>
<td>0.134**</td>
<td>0.487***</td>
<td>-0.046</td>
<td>0.636</td>
</tr>
<tr>
<td></td>
<td>(-27.16)</td>
<td>(1.40)</td>
<td>(2.32)</td>
<td>(34.44)</td>
<td>(-1.46)</td>
<td></td>
</tr>
</tbody>
</table>

Panel B: Debt and equity components of net external financing

<table>
<thead>
<tr>
<th>Dep. Var.</th>
<th>Intercept</th>
<th>$IFR_L\Delta E$</th>
<th>$IFR_H\Delta D$</th>
<th>$IFR_L\Delta E$</th>
<th>$IFR_H\Delta D$</th>
<th>LgSize</th>
<th>B/M</th>
<th>Adj. R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>FE</td>
<td>-0.110***</td>
<td>-0.023**</td>
<td>-0.052**</td>
<td>0.034</td>
<td>-0.053</td>
<td>0.026***</td>
<td>-0.023**</td>
<td>0.057</td>
</tr>
<tr>
<td></td>
<td>(-5.61)</td>
<td>(-2.76)</td>
<td>(-2.49)</td>
<td>(1.18)</td>
<td>(-1.04)</td>
<td>(3.46)</td>
<td>(-2.67)</td>
<td></td>
</tr>
<tr>
<td>$FSTD$</td>
<td>0.023***</td>
<td>0.006***</td>
<td>0.010***</td>
<td>0.001</td>
<td>0.002</td>
<td>-0.035**</td>
<td>0.005***</td>
<td>0.040</td>
</tr>
<tr>
<td></td>
<td>(4.64)</td>
<td>(3.12)</td>
<td>(5.03)</td>
<td>(1.08)</td>
<td>(1.16)</td>
<td>(-2.20)</td>
<td>(5.24)</td>
<td></td>
</tr>
<tr>
<td>$LgFNUM$</td>
<td>-0.102***</td>
<td>0.029</td>
<td>-0.077</td>
<td>0.323***</td>
<td>0.003</td>
<td>0.490***</td>
<td>-0.058</td>
<td>0.618</td>
</tr>
<tr>
<td></td>
<td>(-18.62)</td>
<td>(1.22)</td>
<td>(-0.67)</td>
<td>(3.99)</td>
<td>(1.47)</td>
<td>(37.96)</td>
<td>(-1.59)</td>
<td></td>
</tr>
</tbody>
</table>